二次函數(shù)教學(xué)教案參考 篇一
教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo)。
(二)能力訓(xùn)練要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。
2.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
(三)情感與價(jià)值觀要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.具有初步的創(chuàng)新精神和實(shí)踐能力。
教學(xué)重點(diǎn)
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.理解何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo)。
教學(xué)難點(diǎn)
1.探索方程與函數(shù)之間的聯(lián)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
教學(xué)方法
討論探索法。
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系。當(dāng)一次函數(shù)中的函數(shù)值y=0時(shí),一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解。
現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題。
初中數(shù)學(xué)二次函數(shù)教案 篇二
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、 知識與技能
(1)進(jìn)一步理解表達(dá)式y(tǒng)=Asin(ωx+φ),掌握A、φ、ωx+φ的含義;(2)熟練掌握由 的圖象得到函數(shù) 的圖象的方法;(3)會(huì)由函數(shù)y=Asin(ωx+φ)的圖像討論其性質(zhì);(4)能解決一些綜合性的問題。
2、 過程與方法
通過具體例題和學(xué)生練習(xí),使學(xué)生能正確作出函數(shù)y=Asin(ωx+φ)的圖像;并根據(jù)圖像求解關(guān)系性質(zhì)的問題;講解例題,總結(jié)方法,鞏固練習(xí)。
3、 情感態(tài)度與價(jià)值觀
通過本節(jié)的學(xué)習(xí),滲透數(shù)形結(jié)合的思想;通過學(xué)生的親身實(shí)踐,引發(fā)學(xué)生學(xué)習(xí)興趣;創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度;讓學(xué)生感受數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)學(xué)生邏輯思維的縝密性。
教學(xué)重難點(diǎn)
重點(diǎn):函數(shù)y=Asin(ωx+φ)的圖像,函數(shù)y=Asin(ωx+φ)的性質(zhì)。
難點(diǎn): 各種性質(zhì)的應(yīng)用。
教學(xué)工具
投影儀
教學(xué)過程
【創(chuàng)設(shè)情境,揭示課題】
函數(shù)y=Asin(ωx+φ)的性質(zhì)問題,是三角函數(shù)中的重要問題,是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,也是高考的熱點(diǎn),因?yàn)椋瘮?shù)y=Asin(ωx+φ)在我們的實(shí)際生活中可以找到很多模型,與我們的生活息息相關(guān)。
五、歸納整理,整體認(rèn)識
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
六、布置作業(yè):習(xí)題1-7第4,5,6題。
課后小結(jié)
歸納整理,整體認(rèn)識
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
作業(yè):習(xí)題1-7第4,5,6題。
板書
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 篇三
一、說課內(nèi)容:
蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。
3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1、什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2、它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3、一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解。強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100×2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零。
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式。
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2×2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1、已知一個(gè)直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2、已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3、設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。
4、 籬笆墻長30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍。
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1、 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式。
【設(shè)計(jì)意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2、確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0。
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1、 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2、 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1、已知函數(shù) 是二次函數(shù),求m的值。
2、試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識——應(yīng)用數(shù)學(xué)的意識
初二二次函數(shù)教案 篇四
一。學(xué)習(xí)目標(biāo)
1.經(jīng)歷對實(shí)際問題情境分析確定二次函數(shù)表達(dá)式的過程,體會(huì)二次函數(shù)意義。
2.了解二次函數(shù)關(guān)系式,會(huì)確定二次函數(shù)關(guān)系式中各項(xiàng)的系數(shù)。
二。知識導(dǎo)學(xué)
(一)情景導(dǎo)學(xué)
1.一粒石子投入水中,激起的波紋不斷向外擴(kuò)展,擴(kuò)大的圓的面積S與半徑r之間的函數(shù)關(guān)系式是 。
2.用16米長的籬笆圍成長方形的生物園飼養(yǎng)小兔,怎樣圍可使小兔的活動(dòng)范圍較大?
設(shè)長方形的長為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數(shù)關(guān)系式為 .
3.要給邊長為x米的正方形房間鋪設(shè)地板,已知某種地板的價(jià)格為每平方米240元,踢腳線的價(jià)格為每米30元,如果其他費(fèi)用為1000元,門寬0.8米,那么總費(fèi)用y為多少元?
在這個(gè)問題中,地板的費(fèi)用與 有關(guān),為 元,踢腳線的費(fèi)用與 有關(guān),為 元;其他費(fèi)用固定不變?yōu)?元,所以總費(fèi)用y(元)與x(m)之間的函數(shù)關(guān)系式是 。
(二)歸納提高。
上述函數(shù)函數(shù)關(guān)系有哪些共同之處?它們與一次函數(shù)、反比例函數(shù)的關(guān)系式有什么不同?
一般地,我們稱 表示的函數(shù)為二次函數(shù)。其中 是自變量, 函數(shù)。
一般地,二次函數(shù) 中自變量x的取值范圍是 ,你能說出上述三個(gè)問題中自變量的取值范圍嗎?
(三)典例分析
例1、判斷:下列函數(shù)是否為二次函數(shù),如果是,指出其中常數(shù)a.b.c的值。
(1) y=1― (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3×2
(5)y= (6) y= (7)y= x4+2×2-1 (8)y=ax2+bx+c
例2.當(dāng)k為何值時(shí),函數(shù) 為二次函數(shù)?
例3.寫出下列各函數(shù)關(guān)系,并判斷它們是什么類型的函數(shù).
⑴正方體的表面積S(cm2)與棱長a(cm)之間的函數(shù)關(guān)系;
⑵圓的面積y(cm2)與它的周長x(cm)之間的函數(shù)關(guān)系;
⑶某種儲蓄的年利率是1.98%,存入10000元本金,若不計(jì)利息,求本息和y(元)與所存年數(shù)x之間的函數(shù)關(guān)系;
⑷菱形的兩條對角線的和為26cm,求菱形的面積S(cm2)與一對角線長x(cm)之間的函數(shù)關(guān)系.
三。鞏固拓展
1.已知函數(shù) 是二次函數(shù),求m的值。
2. 已知二次函數(shù) ,當(dāng)x=3時(shí),y= -5,當(dāng)x= -5時(shí),求y的`值.
3.一個(gè)長方形的長是寬的1.6倍,寫出這個(gè)長方形的面積S與寬x之間函數(shù)關(guān)系式。
4.一個(gè)圓柱的高與底面直徑相等,試寫出它的表面積S與底面半徑r之間的函數(shù)關(guān)系式
5.用一根長為40 cm的鐵絲圍成一個(gè)半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數(shù)關(guān)系式.這個(gè)函數(shù)是二次函數(shù)嗎?請寫出半徑r的取值范圍.
6. 一條隧道的截面如圖所示,它的上部是一個(gè)半圓,下部是一個(gè)矩形,矩形的一邊長2.5 m.
⑴求隧道截面的面積S(m2)關(guān)于上部半圓半徑r(m)的函數(shù)關(guān)系式;
⑵求當(dāng)上部半圓半徑為2 m時(shí)的截面面積.(π取3.14,結(jié)果精確到0.1 m2)
課堂練習(xí):
1.判斷下列函數(shù)是否是二次函數(shù),若是,請指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。
(1)y=2-3×2; (2)y=x2+2×3; (3)y= ; (4)y= .
2.寫出多項(xiàng)式的對角線的條數(shù)d與邊數(shù)n之間的函數(shù)關(guān)系式。
3.某產(chǎn)品年產(chǎn)量為30臺,計(jì)劃今后每年比上一年的產(chǎn)量增長x%,試寫出兩年后的產(chǎn)量y(臺)與x的函數(shù)關(guān)系式。
4.圓柱的高h(yuǎn)(cm)是常量,寫出圓柱的體積v(cm3)與底面周長C(cm)之間的函數(shù)關(guān)系式。
課外作業(yè):
A級:
1.下列函數(shù):(1)y=3×2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數(shù)的
是 (填序號).
2.函數(shù)y=(a-b)x2+ax+b是二次函數(shù)的條件為 .
3.下列函數(shù)關(guān)系中,滿足二次函數(shù)關(guān)系的是( )
A.圓的周長與圓的半徑之間的關(guān)系; B.在彈性限度內(nèi),彈簧的長度與所掛物體質(zhì)量的關(guān)系;
C.圓柱的高一定時(shí),圓柱的體積與底面半徑的關(guān)系;
D.距離一定時(shí),汽車行駛的速度與時(shí)間之間的關(guān)系。
4.某超市1月份的營業(yè)額為200萬元,2、3月份營業(yè)額的月平均增長率為x,求第一季度營業(yè)額y(萬元)與x的函數(shù)關(guān)系式。
B級:
5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數(shù)關(guān)系式。
6.某地區(qū)原有20個(gè)養(yǎng)殖場,平均每個(gè)養(yǎng)殖場養(yǎng)奶牛20xx頭。后來由于市場原因,決定減少養(yǎng)殖場的數(shù)量,當(dāng)養(yǎng)殖場每減少1個(gè)時(shí),平均每個(gè)養(yǎng)殖場的奶牛數(shù)將增加300頭。如果養(yǎng)殖場減少x個(gè),求該地區(qū)奶牛總數(shù)y(頭)與x(個(gè))之間的函數(shù)關(guān)系式。
C級:
7.圓的半徑為2cm,假設(shè)半徑增加xcm 時(shí),圓的面積增加到y(tǒng)(cm2).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)圓的半徑分別增加1cm、 時(shí),圓的面積分別增加多少?
(3)當(dāng)圓的面積為5πcm2時(shí),其半徑增加了多少?
8.已知y+2×2=kx(x-3)(k≠2).
(1)證明y是x的二次函數(shù);
(2)當(dāng)k=-2時(shí),寫出y與x的函數(shù)關(guān)系式。
九年級數(shù)學(xué)上冊二次函數(shù)教案2021模板 篇五
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
使學(xué)生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據(jù)這些值說出對應(yīng)的銳角度數(shù)。
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力。
(三)德育滲透點(diǎn)
滲透教學(xué)內(nèi)容中普遍存在的運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):使學(xué)生了解正弦、余弦概念。
2.教學(xué)難點(diǎn):用含有幾個(gè)字母的符號組sinA、cosA表示正弦、余弦;正弦、余弦概念。
三、教學(xué)步驟
(一)明確目標(biāo)
1.引導(dǎo)學(xué)生回憶“直角三角形銳角固定時(shí),它的對邊與斜邊的比值、鄰邊與斜邊的比值也是固定的。”
2.明確目標(biāo):這節(jié)課我們將研究直角三角形一銳角的對邊、鄰邊與斜邊的比值——正弦和余弦。
(二)整體感知
只要知道三角形任一邊長,其他兩邊就可知。
而上節(jié)課我們發(fā)現(xiàn):只要直角三角形的銳角固定,它的對邊與斜邊、鄰邊與斜邊的比值也固定。這樣只要能求出這個(gè)比值,那么求直角三角形未知邊的問題也就迎刃而解了。
通過與“30°角所對的直角邊等于斜邊的一半”相類比,學(xué)生自然產(chǎn)生想學(xué)習(xí)的欲望,產(chǎn)生濃厚的學(xué)習(xí)興趣,同時(shí)對以下要研究的內(nèi)容有了大體印象。
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
正弦、余弦的概念是全章知識的基礎(chǔ),對學(xué)生今后的學(xué)習(xí)與工作都十分重要,因此確定它為本課重點(diǎn),同時(shí)正、余弦概念隱含角度與數(shù)之間具有一一對應(yīng)的函數(shù)思想,又用含幾個(gè)字母的符號組來表示,因此概念也是難點(diǎn)。
在上節(jié)課研究的基礎(chǔ)上,引入正、余弦,“把對邊、鄰邊與斜邊的比值稱做正弦、余弦”。如圖6-3:
請學(xué)生結(jié)合圖形敘述正弦、余弦定義,以培養(yǎng)學(xué)生概括能力及語言表達(dá)能力。教師板書:在△ABC中,∠C為直角,我們把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA.
若把∠A的對邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則
引導(dǎo)學(xué)生思考:當(dāng)∠A為銳角時(shí),sinA、cosA的值會(huì)在什么范圍內(nèi)?得結(jié)論0<sina<1,0<cosa<1(∠a為銳角).這個(gè)問題對于較差學(xué)生來說有些難度,應(yīng)給學(xué)生充分思考時(shí)間,同時(shí)這個(gè)問題也使學(xué)生將數(shù)與形結(jié)合起來。< p="">
教材例1的設(shè)置是為了鞏固正弦概念,通過教師示范,使學(xué)生會(huì)求正弦,這里不妨增問“cosA、cosB”,經(jīng)過反復(fù)強(qiáng)化,使全體學(xué)生都達(dá)到目標(biāo),更加突出重點(diǎn)。
例1 求出圖6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值。
學(xué)生練習(xí)1中1、2、3.
讓每個(gè)學(xué)生畫含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.這一練習(xí)既用到以前的知識,又鞏固正弦、余弦的概念,經(jīng)過學(xué)習(xí)親自動(dòng)筆計(jì)算后,對特殊角三角函數(shù)值印象很深刻。
例2 求下列各式的值:
為了使學(xué)生熟練掌握特殊角三角函數(shù)值,這里還應(yīng)安排六個(gè)小題:
(1)sin45°+cos45; (2)sin30°?cos60°;
在確定每個(gè)學(xué)生都牢記特殊角的三角函數(shù)值后,引導(dǎo)學(xué)生思考,“請大家觀察特殊角的正弦和余弦值,猜測一下,sin20°大概在什么范圍內(nèi),cos50°呢?”這樣的引導(dǎo)不僅培養(yǎng)學(xué)生的觀察力、注意力,而且培養(yǎng)學(xué)生勇于思考、大膽創(chuàng)新的精神。還可以進(jìn)一步請成績較好的同學(xué)用語言來敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減小。”為查正余弦表作準(zhǔn)備。
(四)總結(jié)、擴(kuò)展
首先請學(xué)生作小結(jié),教師適當(dāng)補(bǔ)充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值。知道任意銳角A的正、余弦值都在0~1之間,即
0<sina<1, p="" 0<cosa<1(∠a為銳角).
還發(fā)現(xiàn)Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB.正弦值隨角度增大而增大,余弦值隨角度增大而減小。”
四、布置作業(yè)
教材習(xí)題14.1中A組3.
預(yù)習(xí)下一課內(nèi)容。
五、板書設(shè)計(jì)
二次函數(shù)教案 篇六
二次函數(shù)的圖象與性質(zhì)
1.畫出函數(shù)=2×2-3x的圖象,說明這個(gè)函數(shù)具有哪些性質(zhì)。
2. 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。
(1)=3×2+2x;
(2)=-x2-2x
( 3)=-2×2+8x-8 (4)=12×2-4x+3
板書設(shè)計(jì)
1、畫函數(shù)=ax2+bx+c(a≠0)的圖象。
(列表時(shí),應(yīng)以對稱軸為中心,對稱地選取自變量的值,求出相應(yīng)的函數(shù)值。)
2、二次函數(shù)=ax2+bx+c(a≠0),
當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí),開口向下。
對稱軸是x=-b2a,頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a)
(最值與拋物線的開口方向及頂點(diǎn)的縱坐標(biāo)有關(guān)。)
課后反思
在本節(jié)教學(xué)中,教學(xué)仍從回顧上節(jié)人手,使學(xué)生掌握二次函數(shù) 是由 如何平移得來,并熟練掌握二次函數(shù) 圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)及有關(guān)性質(zhì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考二次函數(shù)=ax2+bx+c(a≠0)圖像的開口方向、對稱軸和頂點(diǎn)坐標(biāo)?這樣激起學(xué)生的求知欲望,能進(jìn)行有目的探究活動(dòng),學(xué)生變被動(dòng)為主動(dòng),學(xué)習(xí)方式發(fā)生了改變。這節(jié)課學(xué)生既動(dòng)手又動(dòng)腦,體驗(yàn)到學(xué)習(xí)知識的樂趣。
二次函數(shù)教案 篇七
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實(shí)際問題的聯(lián)系。
本節(jié)教學(xué)時(shí)間安排1課時(shí)
二、教學(xué)目標(biāo):
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系。
2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn)。
3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
四、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流
五:教具、學(xué)具:課件
六、教學(xué)過程:
[活動(dòng)1] 檢查預(yù)習(xí)引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解。
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn))我●www.huzhidao.com(出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
[活動(dòng)2] 創(chuàng)設(shè)情境 探究新知
問題
1. 課本P94 問題。
2. 結(jié)合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?
3. 結(jié)合預(yù)習(xí)題1,完成課本P94 觀察中的題目。
師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動(dòng)3] 例題學(xué)習(xí)鞏固提高
問題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4] 練習(xí)反饋 鞏固新知
九年級數(shù)學(xué)上冊二次函數(shù)教案2021模板 篇八
1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項(xiàng)及其系數(shù)、一次項(xiàng)及其系數(shù)與常數(shù)項(xiàng)等概念。
2.了解一元二次方程的解的概念,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一元二次方程的解。
重點(diǎn)
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題。
難點(diǎn)
一元二次方程及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識別。
活動(dòng)1 復(fù)習(xí)舊知
1.什么是方程?你能舉一個(gè)方程的例子嗎?
2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式。
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪個(gè)實(shí)數(shù)是方程2x-1=3的解?并給出方程的解的概念。
A.0 B.1 C.2 D.3
活動(dòng)2 探究新知
根據(jù)題意列方程。
1.教材第2頁 問題1.
提出問題:
(1)正方形的大小由什么量決定?本題應(yīng)該設(shè)哪個(gè)量為未知數(shù)?
(2)本題中有什么數(shù)量關(guān)系?能利用這個(gè)數(shù)量關(guān)系列方程嗎?怎么列方程?
(3)這個(gè)方程能整理為比較簡單的形式嗎?請說出整理之后的方程。
2.教材第2頁 問題2.
提出問題:
(1)本題中有哪些量?由這些量可以得到什么?
(2)比賽隊(duì)伍的數(shù)量與比賽的場次有什么關(guān)系?如果有5個(gè)隊(duì)參賽,每個(gè)隊(duì)比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?
(3)如果有x個(gè)隊(duì)參賽,一共比賽多少場呢?
3.一個(gè)數(shù)比另一個(gè)數(shù)大3,且兩個(gè)數(shù)之積為0,求這兩個(gè)數(shù)。
提出問題:
本題需要設(shè)兩個(gè)未知數(shù)嗎?如果可以設(shè)一個(gè)未知數(shù),那么方程應(yīng)該怎么列?
4.一個(gè)正方形的面積的2倍等于25,這個(gè)正方形的邊長是多少?
活動(dòng)3 歸納概念
提出問題:
(1)上述方程與一元一次方程有什么相同點(diǎn)和不同點(diǎn)?
(2)類比一元一次方程,我們可以給這一類方程取一個(gè)什么名字?
(3)歸納一元二次方程的概念。
1.一元二次方程:只含有________個(gè)未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程。
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。
提出問題:
(1)一元二次方程的一般形式有什么特點(diǎn)?等號的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2×2-x+1=0的一次項(xiàng)系數(shù)是1嗎?為什么?
3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根).
活動(dòng)4 例題與練習(xí)
例1 在下列方程中,屬于一元二次方程的是________.
(1)4×2=81;(2)2×2-1=3y;(3)1×2+1x=2;
(4)2×2-2x(x+7)=0.
總結(jié):判斷一個(gè)方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個(gè)未知數(shù);(3)含有未知數(shù)的項(xiàng)的次數(shù)是2.注意有些方程化簡前含有二次項(xiàng),但是化簡后二次項(xiàng)系數(shù)為0,這樣的方程不是一元二次方程。
例2 教材第3頁 例題。
例3 以-2為根的一元二次方程是( )
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
總結(jié):判斷一個(gè)數(shù)是否為方程的解,可以將這個(gè)數(shù)代入方程,判斷方程左、右兩邊的值是否相等。
練習(xí):
1.若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.
2.將下列一元二次方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(1)4×2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4頁 練習(xí)第2題。
4.若-4是關(guān)于x的一元二次方程2×2+7x-k=0的一個(gè)根,則k的值為________.
答案:1.a≠1;2.略;3.略;4.k=4.
活動(dòng)5 課堂小結(jié)與作業(yè)布置
課堂小結(jié)
我們學(xué)習(xí)了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?
作業(yè)布置
教材第4頁 習(xí)題21.1第1~7題。
二次函數(shù)超級經(jīng)典課件教案 篇九
一、教材分析
1、教材所處的地位和作用:
《二次函數(shù)與一元二次方程》是初中數(shù)學(xué)(山東教育出版社)九年級上冊《二次函數(shù)》的一節(jié)內(nèi)容。本節(jié)內(nèi)容體會(huì)二次函數(shù)與一元二次方程之間的聯(lián)系;理解二次函數(shù)圖象與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,及何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)根和沒有實(shí)根;通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解決問題的能力;通過這節(jié)的學(xué)習(xí),學(xué)生將掌握二次函數(shù)與一元二次方程的關(guān)系,本節(jié)是初中階段所學(xué)的有關(guān)函數(shù)知識的重要內(nèi)容之一。 2.教學(xué)目標(biāo)
知識與技能目標(biāo):理解二次函數(shù)圖象與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,及何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)根和沒有實(shí)根;理解一元二次方程的根就是二次函數(shù)y=h(h是實(shí)數(shù))圖象交點(diǎn)的橫坐標(biāo)。
過程與方法目標(biāo):體會(huì)二次函數(shù)與方程之間的聯(lián)系;掌握用圖象法求方程的近似根; 情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生熱愛數(shù)學(xué)、主動(dòng)探究的能力
教學(xué)重點(diǎn):把握二次函數(shù)圖象與x軸(或y=h)交點(diǎn)的個(gè)數(shù)與一元二次方程的根的關(guān)系。 教學(xué)難點(diǎn):應(yīng)用一元二次方程根的判別式,及求根公式,來對二次函數(shù)及其圖象進(jìn)行進(jìn)一
步的理解。
二、教學(xué)策略:
1、教學(xué)手段:啟發(fā)式講解 互動(dòng)式討論 研究式探索
本節(jié)課以學(xué)生的自主探索為主,老師主要通過演示引導(dǎo)啟發(fā)學(xué)生得出結(jié)論,這樣有利于學(xué)生提高學(xué)習(xí)興趣,獲得成就感。在教學(xué)中可以放手讓學(xué)生自己去畫圖象,討論研究出函數(shù)與一元二次方程的關(guān)系,以提問的形式與學(xué)生互動(dòng),通過練習(xí)加深學(xué)生對函數(shù)性質(zhì)的理解和應(yīng)用。
2、教學(xué)方法及學(xué)法:自主探索 觀察發(fā)現(xiàn) 合作交流 對比歸納
三、學(xué)情分析:
學(xué)生的知識技能基礎(chǔ):學(xué)生在上學(xué)期已經(jīng)學(xué)習(xí)過一元二次方程的知識,之前學(xué)習(xí)了二次函數(shù)的圖象和代數(shù)表達(dá)式的三種表示方法,其中主要對一般式和頂點(diǎn)式做了大量的訓(xùn)練,因而從“數(shù)”的方面對二次函數(shù)有了比較全面的認(rèn)識,但對交點(diǎn)式仍然停留在感性認(rèn)識層面,特別是對于從數(shù)形結(jié)合的這一數(shù)學(xué)思想來認(rèn)識二次函數(shù),他們對整章各節(jié)知識的關(guān)系還沒有真正完整的形成,通過從本節(jié)課學(xué)習(xí)二次函數(shù)與一元二次方程之間的關(guān)系開始,學(xué)生將會(huì)對二次函數(shù)的“數(shù)”和“形”真正開始進(jìn)行全面、深刻的接觸。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了認(rèn)識二次函數(shù)圖象、求二次函數(shù)解析式、利用建立二次函數(shù)的數(shù)學(xué)模型,通過轉(zhuǎn)化為頂點(diǎn)式求出最值,解決了一些簡單的實(shí)際問題,感受到了二次函數(shù)與生活的緊密聯(lián)系,他們已經(jīng)有了探索本節(jié)課的數(shù)學(xué)基礎(chǔ);同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了一次函數(shù)圖象應(yīng)用的學(xué)習(xí),對于一次函數(shù)和一元一次方程的關(guān)系有了較多的認(rèn)識,因此教學(xué)中多采取聯(lián)想、類比的啟發(fā)式教學(xué),相信他們會(huì)有能力完成好本節(jié)新課的學(xué)習(xí)任務(wù)。
【學(xué)習(xí)過程】
環(huán)節(jié)一:學(xué)生預(yù)習(xí),教師導(dǎo)學(xué):
我們已經(jīng)知道,豎直上拋物體的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系可用公式h=-5t2+v0t+h0表示,其中h0(m)是拋出時(shí)的高度,v0(m/s)是拋出時(shí)的速度。一個(gè)小球從地面以40m/s的速度豎直向上拋出起,小球的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系如圖所示,那么 (1)h和t的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?與同伴進(jìn)行交流。
【設(shè)計(jì)意圖】:通過設(shè)置問題,幫助學(xué)生體會(huì)二次函數(shù)與實(shí)際生活密不可分的關(guān)系;初步感受二次函數(shù)與一元二次方承的聯(lián)系。
環(huán)節(jié)二:學(xué)生合作,教師參與:
1.在同一坐標(biāo)系中畫出二次函數(shù)y=x2+2x,y=x2-2x+1,y=x2-2x+2的圖象并回答下列問題: (1).每個(gè)圖象與x軸有幾個(gè)交點(diǎn)?
(2).一元二次方程? x2+2x=0,x2-2x+1=0有幾個(gè)根?驗(yàn)證一下一元二次方程x2-2x+2=0有根嗎? (3).二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系? 例題講解
1、在本節(jié)一開始的小球上拋問題中,何時(shí)小球離地面的高度是60cm?你是如何知道的?
2、二次函數(shù)y=ax+bx+c何時(shí)為一元二次方程?它們的關(guān)系如何?
【設(shè)計(jì)意圖】:這是本節(jié)的重點(diǎn),比較抽象,因此通過畫圖讓學(xué)生能夠清楚形象的解決問題,并且能夠培養(yǎng)學(xué)生總結(jié)問題的能力。 環(huán)節(jié)三:學(xué)生展示,教師點(diǎn)撥:
1 若方程ax2+bx+c=0的根為x1=-2和x2=3,則二次函數(shù) y=ax2+bx+c的圖象與x軸交點(diǎn)坐標(biāo)是
. 2 拋物線y=0.5×2-x+3與x軸的交點(diǎn)情況是(
)
A 兩個(gè)交點(diǎn)
B 一個(gè)交點(diǎn)
C 沒有交點(diǎn)
D 畫出圖象后才能說明 3 不畫圖象,求拋物線y=x2-x-6與x軸交點(diǎn)坐標(biāo)。 【設(shè)計(jì)意圖】:本環(huán)節(jié)是對本節(jié)知識的鞏固應(yīng)用,是對新知識點(diǎn)生華,培養(yǎng)學(xué)生數(shù)學(xué)思維的嚴(yán)謹(jǐn)性
環(huán)節(jié)四:學(xué)生探究,教師引領(lǐng):(給同學(xué)充分的時(shí)間考慮,1號同學(xué)發(fā)言交流,教師引導(dǎo)補(bǔ)充)
2如圖,一個(gè)圓形噴水池的中央豎直安裝了一個(gè)柱形噴水裝置OA,A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,按如圖所示的直角坐標(biāo)系,水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是y=-x2+2x+3(x﹥0).柱子OA的高度是多少米?若不計(jì)其它因素,水池的半徑至少為多少米,才能使噴出的水流不至于落在池外?
【設(shè)計(jì)意圖】:本環(huán)節(jié)目的是為了培養(yǎng)優(yōu)生,鍛煉學(xué)生的發(fā)散思維能力。 環(huán)節(jié)五:學(xué)生達(dá)標(biāo),教師測評:
1.這節(jié)課我們主要學(xué)習(xí)了哪些知識?(提示:鼓勵(lì)學(xué)生交流收獲,視情況給小組加分) 2.檢測:
(1)拋物線y=x2+2x-3與x軸的交點(diǎn)個(gè)數(shù)是
(2)拋物線y=mx2-3x+3m+m2經(jīng)過原點(diǎn),則其頂點(diǎn)坐標(biāo)為
【設(shè)計(jì)意圖】:本環(huán)節(jié)是為了檢測學(xué)生一節(jié)課的收獲,使教師能夠全面了解學(xué)生的接收受情況,以備個(gè)別輔導(dǎo)。
教學(xué)反思:
本節(jié)主要內(nèi)容是用函數(shù)的觀念看一元二次方程,探討二次函數(shù)與一元二次方程的關(guān)系。教材結(jié)合一個(gè)具體的實(shí)例討論了一元二次方程的實(shí)根與二次函數(shù)圖象之間的聯(lián)系,然后介紹了用圖象法求一元二次方程近似解的過程。這一節(jié)是反映函數(shù)與方程這兩個(gè)重要數(shù)學(xué)概念之間的聯(lián)系的內(nèi)容。
本節(jié)課,在引入問題的設(shè)計(jì)中做的不夠充分,知識的生成沒能有效呼應(yīng),沒有達(dá)到預(yù)設(shè)的課堂效果。我要在以后的課堂教學(xué)中,加強(qiáng)對教材的研讀,合理把握重難點(diǎn),在情景引入和知識生成的問題設(shè)計(jì)上多下功夫,力爭使自己的教育教學(xué)水平有新的突破
以上就是我為大家?guī)淼?篇《九年級數(shù)學(xué)《二次函數(shù)》教案》,能夠給予您一定的參考與啟發(fā),是我的價(jià)值所在。
本文由用戶海底星空分享,如有侵權(quán)請聯(lián)系。如若轉(zhuǎn)載,請注明出處:http://www.qingqu1.cn/22070.html