高中數學優秀教案 篇一
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;。.。到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區一個小鎮的附近。他每次下班以后都是乘同一次市郊火車回小鎮。小鎮車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開。回到家中,果不出所料,他老婆大發雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發,因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經等了30-4=26分鐘了。但是懼內的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養成經常性地歸納整理、摸索實質的好習慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業,店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現了以下的情況:
(1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
(2)這四人中沒有一人能夠兌開任何一枚硬幣。
(3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內德的男士要付的賬單款額最小。
(4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
(5)如果這三位男士相互之間等值調換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
(6)當這三位男士進行了兩次等值調換以后,他們發現手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
(7)隨著事情的進一步發展,又出現如下的情況:
(8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現在女店主不得不把她的全部硬幣都找給了他。
現在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
(2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
(6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數學教案格式 篇二
一.課題(說明本課名稱)
二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)
三.課型(說明屬新授課,還是復習課)
四.課時(說明屬第幾課時)
五.教學重點(說明本課所必須解決的關鍵性問題)
六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養點)
七.教學方法要根據學生實際,注重引導自學,注重啟發思維
八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟)
九.作業處理(說明如何布置書面或口頭作業)
十.板書設計(說明上課時準備寫在黑板上的內容)
十一.教具(或稱教具準備,說明輔助教學手段使用的工具)
十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)
教案高中數學模板 篇三
[學習目標]
(1)會用坐標法及距離公式證明cα+β;
(2)會用替代法、誘導公式、同角三角函數關系式,由cα+β推導cα—β、sα±β、tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過程見課本)
2、通過下面各組數的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的。整數倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例。
4、關于公式的正用、逆用及變用
高中數學教案模板 篇四
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;
(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;
(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。
教學建議
一、知識結構
二、重點難點分析
本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題。難點是導出排列數的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數。排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數。
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好 的推導。
排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力。
在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數。
②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別。
在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列。
要特別注意,不加特殊說明,本章不研究重復排列問題。
③關于排列數公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。
導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘?!边@實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘。
公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式。對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋。
④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。
⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。
高中數學教案模板 篇五
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。
(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點。
(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。
(5)進一步理解數形結合的思想方法。
教學建議
教材分析
(1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節不予研究。因此,本節涉及曲線方程概念和求曲線方程兩大基本問題。
(2)重點、難點分析
①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。
②本節的難點是曲線方程的概念和求曲線方程的方法。
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。
(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。
(4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合。
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即
文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程?!?/p>
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。
以上內容就是我為您提供的5篇《高中數學教案模板》,希望可以啟發您的一些寫作思路。
本文由用戶楓葉分享,如有侵權請聯系。如若轉載,請注明出處:http://www.qingqu1.cn/22097.html