正在播放一区二区_日本不卡视频_成人福利视频网站_中国av在线免费观看_亚洲小视频在线观看_久久人爽爽人爽爽

三角函數公式大全大學必備 三角函數公式大全整理通用7篇

三角函數公式大全整理通用7篇

在學習數學中,三角函數公式一直是必不可少的一部分。它們是解決各種三角函數問題的關鍵工具。如果你正在為這些公式而頭疼,那么你來對地方了!本篇文章將為你整理了三角函數公式的大全,共計7篇,包含了大學必備的公式、公式表、集錦、總結等內容。無論是想要詳細了解三角函數的各種公式,還是想快速梳理知識點,都能在這里找到答案。無需翻閱其他資料,一站式滿足你的需求!相信這篇三角函數公式大全會為你的學習帶來很大幫助!

角函數公式大全整理 篇一

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α與 -α的三角函數值之間的關系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

高中三角函數公式總結 篇二

銳角三角函數公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推導

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(√3/2)-sina]

=4sina(sin60°-sina)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(√3/2)]

=4cosa(cosa-cos30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

誘導公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導公式記背訣竅:奇變偶不變,符號看象限

萬能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

(4)對于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

角函數怎樣算度數 篇三

一、sin度數公式

1、sin 30= 1/2

2、sin 45=根號2/2

3、sin 60= 根號3/2

二、cos度數公式

1、cos 30=根號3/2

2、cos 45=根號2/2

3、cos 60=1/2

三、tan度數公式

1、tan 30=根號3/3

2、tan 45=1

3、tan 60=根號3

知識拓展:

sin0=sin0°=0

cos0=cos0°=1

tan0=tan0°=0sin15=0.650;

sin15°=0.259

cos15=-0.759;cos15°=0.966

tan15=-0.855;tan15°=0.268

sin30°=1/2

角函數的相關知識 篇四

1.三角函數包括兩部分:三角形和三角函數,以及三角形分析。重點知識點包括:任意角度的三角函數;同角三角函數的基本關系;歸納公式;三角函數的圖像及其變換;三角函數的性質和應用:三角函數的求值和簡化:正弦和余弦定理;解三角形及其合成。

2.三角函數和三角函數包括任意角度及其三角函數,同角關系和歸納公式,正弦和正弦函數,互補和正切函數,三角恒等式變換和三角合成。注重基礎知識和技能,突出角度與代數、幾何、向量等知識點的聯系。題型難度為輕松或中等。

高中三角函數公式總結 篇五

三角形與三角函數

1、正弦定理:在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 。(其中R為外接圓的半徑)

2、第一余弦定理:三角形中任意一邊等于其他兩邊以及對應角余弦的交叉乘積的和,即a=c cosB + b cosC

3、第二余弦定理:三角形中任何一邊的`平方等于其它兩邊的平方之和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2—2bc·cosA

4、正切定理(napier比擬):三角形中任意兩邊差和的比值等于對應角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2)

5、三角形中的恒等式:

對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

證明:

已知(A+B)=(π—C)

所以tan(A+B)=tan(π—C)

則(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

類似地,我們同樣也可以求證:當α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ

高中數學三角函數推導方法定名法則 篇六

90°的奇數倍+α的三角函數,其絕對值與α三角函數的絕對值互為余函數。90°的偶數倍+α的三角函數與α的三角函數絕對值相同。也就是“奇余偶同,奇變偶不變”。

定號法則

將α看做銳角(注意是“看做”),按所得的角的象限,取三角函數的符號。也就是“象限定號,符號看象限”(或為“奇變偶不變,符號看象限”)。

在Kπ/2中如果K為偶數時函數名不變,若為奇數時函數名變為相反的函數名。正負號看原函數中α所在象限的正負號。關于正負號有個口訣;一全正,二正弦,三兩切,四余弦,即第一象限全部為正,第二象限角,正弦為正,第三象限,正切和余切為正,第四象限,余弦為正?;蚝唽憺椤癆STC”,即“all”“sin”“tan+cot”“cos”依次為正。還可簡記為:sin上cos右tan/cot對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan/cot的正值斜著。

比如:90°+α。定名:90°是90°的奇數倍,所以應取余函數;定號:將α看做銳角,那么90°+α是第二象限角,第二象限角的正弦為正,余弦為負。所以sin(90°+α)=cosα,cos(90°+α)=-sinα這個非常神奇,屢試不爽~

還有一個口訣“縱變橫不變,符號看象限”,例如:sin(90°+α),90°的終邊在縱軸上,所以函數名變為相反的函數名,即cos,所以sin(90°+α)=cosα。

高中數學三角函數公式 篇七

公式一公式二sin(2kπ+α)=sin αcos(2kπ+α)=cos αtan(2kπ+α)=tan αcot(2kπ+α)=cot αsec(2kπ+α)=sec αcsc(2kπ+α)=csc αsin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot αsec(π+α)=-sec αcsc(π+α)=-csc α公式三公式四sin(-α)=-sin αcos(-α)=cos αtan(-α)=-tan αcot(-α)=-cot αsec(-α)=sec αcsc(-α)=-csc αsin(π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot αsec(π-α)=-sec αcsc(π-α)=csc α公式五公式六sin(α-π)=-sin αcos(α-π)=-cos αtan(α-π)=tan αcot(α-π)=cot αsec(α-π)=-sec αcsc(α-π)=-csc αsin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot(2π-α)=-cot αsec(2π-α)=sec αcsc(2π-α)=-csc α公式七公式八sin(π/2+α)=cosαcos(π/2+α)=?sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα公式九公式十sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα

以上內容就是我為您提供的7篇《三角函數公式大全整理》,希望可以對您的寫作有一定的參考作用,更多精彩的范文樣本、模板格式盡在我。

本文由用戶feng分享,如有侵權請聯系。如若轉載,請注明出處:http://www.qingqu1.cn/23271.html

(0)

相關推薦

發表回復

您的郵箱地址不會被公開。 必填項已用 * 標注

主站蜘蛛池模板: 亚洲成人av在线 | 国产日韩精品一区 | 久久久久久久一区 | 精品国产黄a∨片高清在线 欧美一级免费 | 亚洲专区中文字幕 | 久久精品夜夜夜夜夜久久 | 狠狠操夜夜爱 | 日本欧美在线观看 | 国产精品一区二区无线 | 一区二区不卡视频 | 午夜精品 | 亚洲男人天堂网 | 日韩欧美高清 | 欧美狠狠操 | 日本高清视频在线 | 亚洲第一视频网站 | 色吧av | 亚洲成人午夜电影 | 中文字幕乱码一区二区三区 | 欧美激情亚洲 | 日韩国产欧美视频 | 亚洲成人看片 | 激情综合五月天 | 一区二区三区免费在线 | 久久久久久久久久久精 | 久久久久国产一区二区三区四区 | 成年无码av片在线 | 日本在线观看一区 | 欧美a级免费看 | 久久免费公开视频 | 久久精品一| 精品久久一区二区三区 | av看片网| 伊人网在线视频观看 | 一级黄色片看看 | 中国女人黄色大片 | 日韩av在线一区 | 在线免费观看中文字幕 | 国产精品久久久久久久天堂 | 超碰97免费在线 | 成人精品一区二区 |