篇1:初一數學下冊知識點總結
相交線
對頂角相等。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
平行線
經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
1、直線平行的條件
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。
2、平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
二元一次方程組
方程中含有兩個未知數(x和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
消元
將未知數的個數由多化少、逐一解決的’想法,叫做消元思想。
不等式
用小于號或大于號表示大小關系的式子,叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。
不等式的性質
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
篇2:初一下冊數學知識點總結
多項式除以單項式
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運算法則”異同點
1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對于含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n=am÷an(a≠0)。
十、零指數冪
1、零指數冪的意義:任何不等于0的數的0次冪都等于1,即:a0=1(a≠0)。
篇3:初一數學下冊知識點總結
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(“≠”、“”)表示的不等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特征和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,并能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、余角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的“位置關系”確定“數量關系”
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.
篇4:初一數學下冊知識點總結
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內角和定理 三角形三個內角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
初一數學學習方法
1.讀的方法。初一同學往往不善于讀數學書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數學書呢?平時應做到:
(1)粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節知識的概貌,重、難點;
(2)細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,并在不理解的地方作上記號(以便求教);
(3)研讀。要研究知識間的內在聯系,研討書本知識安排意圖,并對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初一同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課的過程中注意做到:
(1) 聽每節課的學習要求;
(2) 聽知識的引入和形成過程;
(3) 聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4) 聽例題關鍵部分的提示及應用的數學思想方法;
(5) 聽好課后小結。
3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,
數學更離不開思維活動,善于思考則學得活,效率高;不善于思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1) 敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2) 善于思考。會抓住問題的關鍵、知識的重點進行思考;
(3) 反思。要善于從回顧解題策略、方法的優劣進行分析、歸納、總結。
4.問的方法。孔子曰:“敏而好學,不恥不問。” 愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善于問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1) 追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續發問;
(2) 反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;
(3) 類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;
(4) 聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1) 在“聽”,“思”中有選擇地記錄;
(2) 記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3) 記解題思路、思想方法;
(4) 記課堂小結。并使學生明確筆記是為補充“聽”“思”的不足,是為最后復習準備的,好的筆記能使復習達到事倍功半的效果。
正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
篇5:初一下冊數學知識點總結
初一下冊數學知識點歸納
一、整式
單項式和多項式統稱整式。
a)由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
b)單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,并非沒有系數,系數為1或-1。
c)一個單項式中,所有字母的指數和叫做這個單項式的次數(注意:常數項的單項式次數為0)
a)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數項。一個多項式中,次數最高項的次數,叫做這個多項式的次數.
b)單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數。多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數。多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
a)整式的加減實質上就是去括號后,合并同類項,運算結果是一個多項式或是單項式.
b)括號前面是“-”號,去括號時,括號內各項要變號,一個數與多項式相乘時,這個數與括號內各項都要相乘。
二、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b) 指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對于加法,不僅底數相同,還要求指數相同才能相加;
d)當三個或三個以上同底數冪相乘時,法則可推廣為(其中m、n、p均為整數);
e)公式還可以逆用:(m、n均為整數)
a)冪的乘方法則:(m,n都是整數數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆。 b)(m,n都為整數)
c) 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
d)底數有時形式不同,但可以化成相同。
e) 要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f) 積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數)。
g) 冪的乘方與積乘方法則均可逆向運用。
三、同底數冪的除法
a)同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0).
b)在應用時需要注意以下幾點:
1) 法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a0。
2)任何不等于0的數的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。
c)任何不等于0的數的-p次冪(p是正整數),等于這個數的p的次冪的倒數,即( a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的,當a<0時,a-p的值可能是正也可能是負的,如, d)運算要注意運算順序。
四、整式的乘法
單項式相乘,它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
a)積的系數等于各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
b)相同字母相乘,運用同底數冪的乘法法則;
c)只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
d)單項式乘法法則對于三個以上的單項式相乘同樣適用;
e)單項式乘以單項式,結果仍是一個單項式。
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。 單項式與多項式相乘時要注意以下幾點:
a)單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;
c) 在混合運算時,要注意運算順序。
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
a)多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數應等于原兩個多項式項數的積;
b)多項式相乘的結果應注意合并同類項;
c)對含有同一個字母的一次項系數是1的兩個一次二項式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項系數為1,一次項系數等于兩個因式中常數項的和,常數項是兩個因式中常數項的積。對于一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到。
五、平方差公式
兩數和與這兩數差的積,等于它們的平方差,即。
其結構特征是:
a)公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
六、完全平方公式
兩數和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項式的完全平方;
b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現這樣的錯誤。
七、整式的除法
單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
初一數學學習方法指導
一、數學學習方法的重要性
前蘇聯教學論專家巴班斯基曾指出的:“ 教學方法是由學習方式和教學方式運用的協調一致的效果決定的。” 從國際教育改革和發展趨勢來看,教會學生學習、教會學生積極主動發展是世界各國的共同目標。在人類進入信息時代的新世紀,人們將面臨知識不斷更新,學習成為貫穿人的一生的事情,一方面不僅要關注學生素質發展的全面完善以及個性的健康和諧發展,另一方面還要關注到學生的學習和發展,更為重要的是要讓學生愿意學習,學會學習,掌握學習的方法、技能,能夠積極主動的學習。
二、數學學習的常用方法
我國要求尊重學生的學習主體地位,要真正把學生作為學習的主人翁看待;關注學生的學習過程,倡導學生主動參與,使學生在自主、合作、探究的方式中積極主動地進行學習活動;培養學生的創新精神與實踐能力。特別是對于初中一年級,要為學生學習數學知識打下良好基礎,數學學習方法的學習顯得更具有時代性和前瞻性。數學學習方法指導是一個由非智力因素、學習方法、學習習慣、學習能力多元組成的統一整體,因此,應以系統整體的觀點進行學法指導,目的在于使學生加強學習修養,激發學習動機;指導學生掌握科學的學習方法;指導學生學習數學的良好習慣,進而提高學習能力及效果。
(1 )正確認識數學學習方法的重要性。
啟發學生認識到科學的學習方法是提高學習成績的重要因素,并把這一思想貫穿于整個教學過程之中。可以通過講述數學名人的故事,激勵學生,我結合《數軸》一課的內容,在班上講述笛卡爾在病床上發現數軸,最終開創了用數軸表示有理數的故事。讓孩子懂得了獲得數學知識,學習數學的方法才是關鍵。在班級中,我多次召開數學學法研討會,讓學習成績優秀的同學介紹經驗,開辟黑板報專欄進行學習方法的討論。
(2 )形成良好的非智力因素
非智力因素是學習方法指導得以進行的基礎。初一學生好奇心強烈,但學習的持久性不長,如果在教學中具有積極的非智力因素基礎,可以使學生學習的積極性長盛不衰。激發學習動機,即激勵學生主體的內部心理機制,調動其全部心理活動的積極性。比如在學習《概率初步認識》一課中,教學引入時,我根據學生喜歡玩撲克牌的愛好,和他們來講撲克游戲,引發學生的興趣,使學生產生強烈的求知欲。有的課教師還可以運用形象生動、貼近學生、幽默風趣的語言來感染學生。
鍛煉學習數學的意志。心理學家認為:意志在克服困難中表現,也在經受挫折、克服困難中發展,困難是培養學生意志力的“ 磨刀石”.我認為應該以練習為主,在初一的數學練習中,要經常給學生安排適當難度的練習題,讓他們付出一定的努力,在獨立思考中解決問題,但注意難度必須適當,因為若太難會挫傷學生的信心,太易又不能鍛煉學生的意志。
養成良好的數學學習習慣。有的孩子習慣“ 悶” 題目,盲目的以為多做題就是學好數學的方法,這個不良的學習習慣,在平時的教學中老師一定要注意糾正。
(3 )指導學生掌握科學的數學學習方法。
①合理滲透。在教學中要挖掘教材內容中的學法因素,把學法指導滲透到教學過程中。例如我在進行《完全平方公式》教學時,很多孩子老是漏掉系數2 乘以首尾兩項,于是我就給他們編了首順口溜,“ 頭平方,尾平方,頭尾組合2 拉走” ,這樣選取生動、有趣的記憶法來指導學生學習,有利于突破知識的難點。②隨機點撥。無論是在授課階段還是在學生練習階段,教師要有強烈的學法指導意識,抓住最佳契機,畫龍點睛地點撥學習方法。
③及時總結。在傳授知識、訓練技能時,教師要根據教學實際,及時引導學生把所學的知識加以總結。我在完成一個單元的學習之后都讓孩子們養成自己總結的習慣,使單元重點系統化,并找出規律性的東西。
④遷移訓練。總結所學內容,進行學法的理性反思,強化并進行遷移運用,在訓練中掌握學法。
(4 )開設數學學法指導課,并列入數學教學計劃。
在我所任教的初一年級里,我每兩周一課時給學生上數學學法的指導課。結合正反例子講,結合數學學科的具體知識和學法特點講,結合學生的思想實際講,邊講邊示范邊訓練。
數學學習能力包括觀察力、記憶力、思維力、想象力、注意力以及自學、交往、表達等能力。學習活動過程是一個需要深入探究的過程。在這一過程中,教師要挖掘教材因素,注意疏通信息渠道,善于引導學生積極思維,使學生不斷發現問題或提出假設,檢驗解決問題,從而形成勇于鉆研、不斷探究的習慣,架設起學生由知識向能力、能力與知識相融合的橋梁。總之,初一是學生知識奠定的根基時期,對學生數學學習方法的指導,要力求做到轉變思想與傳授方法結合,學法與教法結合,課堂與課后結合,教師指導與學生探求結合,建立縱橫交錯的學法指導網絡,促進學生掌握正確的學習方法。為日后進一步進行數學學習打好良好的基礎。
初一數學學習攻略
1.讀的方法。同學們往往不善于讀數學書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數學書呢?平時應做到:
一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節知識的概貌,重、難點;
二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,并在不理解的地方作上記號(以便求教);
三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,并對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初中同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽德智課程時注意做到:
(1)聽每節課的學習要求;
(2)聽知識的引入和形成過程;
(3)聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4)聽例題關鍵部分的提示及應用的數學思想方法;
(5)做好課后小結。
3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,數學更離不開思維活動,善于思考則學得活,效率高;不善于思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2)善于思考。會抓住問題的關鍵、知識的重點進行思考;
(3)反思。要善于從回顧解題策略、方法的優劣進行分析、歸納、總結。
4.問的方法。孔子曰:“敏而好學,不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善于問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1)追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續發問;
(2)反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;
(3)類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;
(4)聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1)在“聽”,“思”中有選擇地記錄;
(2)記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3)記解題思路、思想方法;
(4)記課堂小結。并使學生明確筆記是為補充“聽”“思”的不足,是為最后復習準備的,好的筆記能使復習達到事倍功半的效果。
正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐。所以暑期期間每天給自己一些時間學習數學是很有必要的。
篇6:數學初一下冊知識點總結
列代數式的幾個注意事項
(1)數與字母相乘,或字母與字母相乘通常使用“·?”乘,或省略不寫。
(2)數與數相乘,仍應使用“×”乘,不用“·?”乘,也不能省略乘號。
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a。
(4)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a,寫成a3的形式。
(5)a與b的.差寫作a-b,要注意字母順序,若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。
實數
1、平方根
平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬于非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。
2、立方根
如果一個數的立方等于a,那么這個數叫a的立方根,也稱為三次方根。
3、立方根性質
(1)在實數范圍內,任何實數的立方根只有一個
(2)在實數范圍內,負數不能開平方,但可以開立方
(3)0的立方根是0
4、實數
實數,是有理數和無理數的總稱。實數具有封閉性、有序性、傳遞性、稠密性、完備性等。
平行線
經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
1、直線平行的條件
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。
2、平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
篇7:初一數學下冊知識點總結
不等式與不等式組
1.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
5.不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
點、線、面、體知識點
1.幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點動成線,線動成面,面動成體。
點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點和射線上另一點來表示。
一條線段可用它的端點的兩個大寫字母來表示。
注意:
(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點,射線有一個端點,線段有兩個端點。
(4)點和直線的位置關系有線面兩種:
①點在直線上,或者說直線經過這個點。
②點在直線外,或者說直線不經過這個點。
篇8:初一數學下冊知識點總結
相交線與平行線知識要點
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;+=180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,則=;=;=;=。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則=;=。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則+=180°;+=180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果=或=,則a∥b。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果+=180°;
+=180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
9、判斷一件事情的語句叫命題。命題由題設和結論兩部分組成,有真命題和假命題之分。如果題設成立,那么結論一定成立,這樣的命題叫真命題;如果題設成立,那么結論不一定成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
初中數學學習方法
一、主動預習
預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。
因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
二、主動思考
很多同學在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應用所學的知識去解答問題。主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發對某些知識的興趣,更有助于學習。靠著老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!
三、善于總結規律
解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:
(1)本題最重要的特點是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯想、變換來實現轉化的?
(4)解本題用了哪些數學思想、方法?
(5)解本題最關鍵的一步在那里?
(6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什么情況下采用嗎?
把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,孩子解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。
四、拓寬解題思路
數學解題不要局限于本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以后的做題過程中就會有更多的選擇。
五、必須要有錯題本
說到錯題本不少同學都覺的自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發現自己力不從心了,因此,錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。
六、五個方面思考
“1×5”學習法,就是做一道題,要從五個方面思考,這點可以結合前面說到的“總結規律”“拓展思路”。五個方面分別為:
①這道題考查的知識點是什么。
②為什么要這樣做。
③我是如何想到的。
④還可以怎樣做,有其它方法嗎?
⑤一題多變看看它有幾種變化的形式
千萬不要覺得麻煩,學習習慣的培養最難的就是最初的一個月,這就像火箭升空一樣,最難的就是點火起飛階段,所以,一旦養成了良好的數學學習習慣和思維方式,在今后的學習中就會非常的輕松。
七、獨立完成作業
現在很多學生用一些APP來幫助寫作業,找個照片就有答案,或者是抄襲其他同學的作業,這可以分兩種情況來說,一種是為了圖快、求速度,如果經常這樣會養成不良的審題習慣,容易走馬觀花、粗心大意。還有一種是為了圖方便,這會導致同學們養成“怕麻煩”的心理,一旦題目有些難度,自己就開始心煩意亂,思路模糊,因此,大家一定要養成良好的獨立完成作業的習慣。
篇9:初一下冊數學知識點
【知識點一】實數的分類
1、按定義分類:2.按性質符號分類:
注:0既不是正數也不是負數.
【知識點二】實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數a+b=0.
2.絕對值|a|≥0.
3.倒數(1)0沒有倒數(2)乘積是1的兩個數互為倒數.a、b互為倒數.
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作.
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
【知識點三】實數與數軸
數軸定義:規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
【知識點四】實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大小:
【知識點五】實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
【知識點六】有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用(1≤<10,n為整數)的形式記數的方法叫科學記數法.
篇10:初一下冊數學知識點
1.有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)其中a表示橫軸,b表示縱軸。
2.平面直角坐標系:在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與垂直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,豎直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6.特殊位置的點的坐標的特點
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
(4)點到軸及原點的距離。
點到x軸的距離為|y|;點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
7.在平面直角坐標系中對稱點的特點
(1)關于x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。(橫同縱反)
(2)關于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。(橫反縱同)
(3)關于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。(橫縱皆反)
1.不等式:用符號,,,表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號),連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-12的解集是x3
(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)與不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。
篇11:初一下冊數學知識點
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;
+=180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;
=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a‖b,
則=;=;=;=。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a‖b,則=;=。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a‖b,則+=180°;
+=180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a‖b,a‖c,則‖。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a‖b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果=或=,則a‖b。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果+=180°;
+=180°,則a‖b。
判定4:平行于同一條直線的兩條直線互相平行。如果a‖b,a‖c,則‖。
9、判斷一件事情的語句叫命題。命題由題設和結論兩部分組成,有真命題和假命題之分。如果題設成立,那么結論一定成立,這樣的命題叫真命題;如果題設成立,那么結論不一定成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
篇12:關于初一數學下冊知識點
平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。
3、在平面內畫兩條互相垂直,并且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。平面直角坐標系有兩個坐標軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標系所在平面叫做坐標平面,兩坐標軸的公共原點叫做平面直角坐標系的原點。X軸和Y軸把坐標平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般情況下,x軸和y軸取相同的單位長度。
4、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
5、點到軸及原點的距離
點到x軸的距離為|y|;點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1、關于x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2、關于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3、關于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規律:
第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
x軸上的點縱坐標為0,y軸橫坐標為0。
二元一次方程組
(1)定義
二元一次方程是指含有兩個未知數(例如x和y),并且所含未知數的項的次數都是1的方程。兩個結合在一起的共含有兩個未知數的一次方程叫二元一次方程組。
(2)解二元一次方程的方法
①代入消元法
②加減消元法
不等式與不等式組
(1)不等式
用不等號(,≥,≤,≠)連接的式子叫做不等式。
(2)不等式的性質
①對稱性;
②傳遞性;
③加法單調性,即同向不等式可加性;
④乘法單調性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
(3)一元一次不等式
用不等號連接的,含有一個未知數,并且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。
相交線與平行線
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
2、三線八角:對頂角(相等),鄰補角(互補),同位角,內錯角,同旁內角。
3、兩條直線被第三條直線所截:
同位角F(在兩條直線的同一旁,第三條直線的同一側)
內錯角Z(在兩條直線內部,位于第三條直線兩側)
同旁內角U(在兩條直線內部,位于第三條直線同側)
4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。
5、垂直三要素:垂直關系,垂直記號,垂足
6、垂直公理:過一點有且只有一條直線與已知直線垂直。
7、垂線段最短。
8、點到直線的距離:直線外一點到這條直線的垂線段的長度。
9、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c
10、平行線的判定:
①同位角相等,兩直線平行。②內錯角相等,兩直線平行。 ③同旁內角互補,兩直線平行。
11、推論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
篇13:初一數學下冊知識點
1、單項式:數字與字母的積,叫做單項式。
2、多項式:幾個單項式的和,叫做多項式。
3、整式:單項式和多項式統稱整式。
4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。
5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。
6、余角:兩個角的和為90度,這兩個角叫做互為余角。
7、補角:兩個角的和為180度,這兩個角叫做互為補角。
8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在“三線八角”中,位置相同的角,就是同位角。
10、內錯角:在“三線八角”中,夾在兩直線內,位置錯開的角,就是內錯角。
11、同旁內角:在“三線八角”中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。
12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。
13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。
17、全等圖形:兩個能夠重合的圖形稱為全等圖形。
18、變量:變化的數量,就叫變量。
19、自變量:在變化的量中主動發生變化的,變叫自變量。
20、因變量:隨著自變量變化而被動發生變化的量,叫因變量。
21、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
篇14:初一數學下冊知識點
1.1正數與負數
在以前學過的0以外的數前面加上負號“-”的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上“+”)。
1.2有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等于加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
篇15:初一數學下冊知識點
初一下冊數學知識點總結北師大版
一、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b)指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對于加法,不僅底數相同,還要求指數相同才能相加;
二、冪的乘方與積的乘方
三、同底數冪的除法
(1)運用法則的前提是底數相同,只有底數相同,才能用此法則
(2)底數可以是具體的數,也可以是單項式或多項式
(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負
四、整式的乘法
1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。
如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。
五、平方差公式
表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等于這兩個數的平方差,這個公式就叫做乘法的平方差公式
公式運用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項
②混淆公式
③運算結果中符號錯誤
④變式應用難于掌握。
七、整式的除法
1、單項式的除法法則
單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
注意:首先確定結果的系數(即系數相除),然后同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。
七年級下冊數學復習資料
【相似變換】
※1、如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m、n,那么就說這兩條線段的比AB:CD=m:n,或寫成.
※2、四條線段a、b、c、d中,如果a與b的比等于c與d的比,即,那么這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3、注意點:
①a:b=k,說明a是b的k倍;
②由于線段a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a,與互為倒數;
【平移變換】
(1)圖形平移前后的形狀和大小沒有變化,只是位置發生變化;
(2)圖形平移后,對應點連成的線段平行且相等(或在同一直線上)
(3)多次平移相當于一次平移。
(4)多次對稱后的圖形等于平移后的圖形。
(5)平移是由方向,距離決定的。
(6)經過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行且相等。
這種將圖形上的所有點都按照某個方向作相同距離的位置移動,叫做圖形的平移運動,簡稱為平移
七年級數學知識點
一元一次方程
一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數化為1 …… (檢驗方程的解).
列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.
篇16:初一數學下冊知識點
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標,記作P(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①x軸正半軸上的點:橫坐標 0,縱坐標 0;②x軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點P(a,b)到x軸的距離是 |b| ,到y軸的距離是 |a| 。
9、對稱點的坐標特點①關于x軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點P(2,3) 到x軸的距離是 ; 到y軸的距離是 ; 點P(2,3) 關于x軸對稱的點坐標為( , );點P(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與x軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與x軸平行、與y軸垂直 。如果點P(2,3)、Q(2,6),這兩點橫坐標相同,則PQ∥y軸,PQ⊥x軸;如果點P(-1,2)、Q(4,2),這兩點縱坐標相同,則PQ∥x軸,PQ⊥y軸。
12、平行于x軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點P(a,b) 在一、三象限角平分線上,則P點的橫坐標與縱坐標相同,即 a = b ;如果點P(a,b) 在二、四象限角平分線上,則P點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規律進行。如將點P(2,3)向左平移2個單位后得到的點的坐標為( , );將點P(2,3)向右平移2個單位后得到的點的坐標為( , );將點P(2,3)向上平移2個單位后得到的點的坐標為( , );將點P(2,3)向下平移2個單位后得到的點的坐標為( , );將點P(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點P(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點P(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點P(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
初一數學學習方法
一、多看
主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎么閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預習閱讀。預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批注,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。
3.課后復習閱讀。課后復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課后,必須先閱讀課本,然后再做作業;一個單元后,應全面閱讀課本,對本單元的內容前后聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。
二、多想
主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。
同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納總結數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習題,學數學一定要做習題,并且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。
四、多問
是指在學習過程中要善于發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有經驗的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那么,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當然發現不了什么問題,也提不出疑問。發現問題后,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學習的人,才有可能成為真正的學習上的強者。
篇17:初一下冊數學知識點
一、互余、互補、對頂角
1、相加等于90°的兩個角稱這兩個角互余。 性質:同角(或等角)的余角相等。
2、相加等于180°的兩個角稱這兩個角互補。 性質:同角(或等角)的補角相等。
3、兩條直線相交,有公共頂點但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質:對頂角相等。
4、兩條直線相交,有公共頂點且有一條公共邊的兩個角互為鄰補角。 (相鄰且互補)
二、三線八角: 兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(旁)的兩個角叫做同位角。
②在兩直線之間(內部),在第三條直線的兩側(旁)的兩個角叫做內錯角。
③在兩直線之間(內部),在第三條直線的同側(旁)的兩個角叫做同旁內角。
三、平行線的判定
①同位角相等
②內錯角相等 兩直線平行
③同旁內角互補
四、平行線的性質
①兩直線平行,同位角相等。 ②兩直線平行,內錯角相等。 ③兩直線平行,同旁內角互補。
五、尺規作圖(用圓規和直尺作圖)
①作一條線段等于已知線段。 ②作一個角等于已知角。
篇18:初一下冊數學知識點
1.不等式:用符號“”,“≤”,“≥”表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號“>”,“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”,“≤”連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果x>y,那么yy;(對稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實數或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數)
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母 (運用不等式性質2、3)
(2)去括號
(3)移項 (運用不等式性質1)
(4)合并同類項
(5)將未知數的系數化為1 (運用不等式性質2、3)
(6)有些時候需要在數軸上表示不等式的解集
10. 一元一次不等式與一次函數的綜合運用:
一般先求出函數表達式,再化簡不等式求解。
初一數學復習方法
考試與作業邏輯不同:
我們的考試不同于作業,有些孩子作業寫的還可以,準確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標準,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前后一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:
復習方法總結
1回歸書本,梳理章節概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎么定義,性質定理有幾條,判定定理有幾條?他們之間有什么聯系和區別?在這一章中,哪些地方一定要加“同一平面內”這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節常見的熱點問題歸納練習。
我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等于我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又準確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在于做的多,而是在精練,你做完之后不斷的復盤,用自己的語言說出思路來,找找看里面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對于錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
篇19:初一數學下冊知識點
初一數學學習方法
初一數學下冊知識點
相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
返回目錄
初一數學下冊知識點:實數
【知識點一】實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
【知識點二】實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
【知識點三】實數與數軸
數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
【知識點四】實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大小:
【知識點五】實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
【知識點六】有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標,記作P(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①x軸正半軸上的點:橫坐標 0,縱坐標 0;②x軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點P(a,b)到x軸的距離是 |b| ,到y軸的距離是 |a| 。
9、對稱點的坐標特點①關于x軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點P(2,3) 到x軸的距離是 ; 到y軸的距離是 ; 點P(2,3) 關于x軸對稱的點坐標為( , );點P(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與x軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與x軸平行、與y軸垂直 。如果點P(2,3)、Q(2,6),這兩點橫坐標相同,則PQ∥y軸,PQ⊥x軸;如果點P(-1,2)、Q(4,2),這兩點縱坐標相同,則PQ∥x軸,PQ⊥y軸。
12、平行于x軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點P(a,b) 在一、三象限角平分線上,則P點的橫坐標與縱坐標相同,即 a = b ;如果點P(a,b) 在二、四象限角平分線上,則P點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規律進行。如將點P(2,3)向左平移2個單位后得到的點的坐標為( , );將點P(2,3)向右平移2個單位后得到的點的坐標為( , );將點P(2,3)向上平移2個單位后得到的點的坐標為( , );將點P(2,3)向下平移2個單位后得到的點的坐標為( , );將點P(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點P(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點P(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點P(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
返回目錄
初一數學學習方法
一、多看
主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎么閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預習閱讀。預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批注,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。
3.課后復習閱讀。課后復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課后,必須先閱讀課本,然后再做作業;一個單元后,應全面閱讀課本,對本單元的內容前后聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。
二、多想
主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。
同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納總結數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習題,學數學一定要做習題,并且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。
四、多問
是指在學習過程中要善于發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有經驗的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那么,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當然發現不了什么問題,也提不出疑問。發現問題后,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學習的人,才有可能成為真正的學習上的強者。
返回目錄
本文由用戶折月煮酒分享,如有侵權請聯系。如若轉載,請注明出處:http://www.qingqu1.cn/27778.html